

RESOURCES FOR "SSC-II PHYSICS

ZUEB EXAMINATIONS 2021

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1. Extended Response Questions (ERQs)

HOW TO ATTEMPT ERQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION C (LONG ANSWER QUESTIONS)

@copyright ZUEB

@copyright ZUEB

S.NO	ERQ	ANSWER	CL	DL
1.	Define Acceleration and Force. Derive the equation Vf=Vi+at	FORCE "Force is the agent which changes or tends to change the state of a body i.e state of rest or motion." EQUATIONS OF MOTION FOR UNIFORMLY ACCELERATED BODIES FIRST EQUATION OF MOTION Let a body of mass 'm' moving with uniform acceleration "a" starting with initial velocity 'Vi' and attains a final velocity 'Vf' in time 't' then according to the definition of the acceleration, Acceleration = change in velocity time $a = \Delta V$ t Vf - Vi a =	U	M
2.	Explain the variation in "g" with altitude?	Vf = Vi + at If g and g' be the acceleration due to gravity at the surface of the earth and at a height h above earth surface then we can write: $g = \frac{G M_e}{R_e^2} \qquad \dots (i) \text{ Eq.}$ $g' = \frac{G M_e}{(R_e + h)^2} \qquad \dots (ii) \text{ Eq.}$ Dividing Eq. (ii) by Eq. (i) $\frac{g'}{g} = \frac{\frac{G' M_e}{(R_e + h)^2}}{\frac{g' M_e}{R_e^2}}$ $\frac{g'}{g} = \frac{R_e^2}{(R_e + h)^2}$ $\frac{g'}{g} = \frac{(R_e + h)^{-2}}{R_e^{-2}}$ $\frac{g'}{g} = \left(\frac{R_e + h}{R_e}\right)^{-2}$ $\frac{g'}{g} = \left(1 + \frac{h}{R_e}\right)^{-2}$ $(1 + b)^n = 1 + nb$ If $b < 1$	R	M

	h h		
	$\frac{1}{\mathbf{R}_{e}} < 1 OR h < R_{e}$		
	Then above equation becomes:		
	$\therefore \qquad \frac{g'}{g} = 1 + (-2)\frac{h}{R_e}$		
	$g' = g\left[1 - \frac{2h}{R_e}\right]$		
	This shows that acceleration due to gravity decreases with altitude		
 Define Thermal expansion, Co-efficient of linear Expansion. Also prove β=3α 	CO-EFFICIENT OF LINEAR EXPANSION "Co-efficient of linear expansion is the fractional change in length per degree change of temperature." T h e r m a 1 E x p a n s i o n When a metal is heated, its molecules vibrate more energetically against the action of inter molecular force producing greater displacement since the average distances among the molecules increase, the size of the solid increases. Such an expansion is called thermal expansion. P r O O f: If a _i , b _i and c _i be the initial length, width and height of cubical metal body then initial volume of the body is given by: $V_i = a_i \ b_i \ c_i \qquad Eq. (i)$ If a_f , b_f and c_f be the final length, width and height of cubical metal body then final volume of the body is given by: $V_f = a_f \ b_f \ c_f \qquad \ Eq. (ii)$ AFTER HEATING	U	M
	$\alpha = \frac{\Delta L}{L_i \Delta T}$		
	$\alpha L_i \Delta T = \Delta L$		
	Since $L_f = L_i + \Delta L$		
	$L_{f} = L_{i} + \alpha L_{i} \Delta I$ $L_{i} = L_{i} (I + \alpha \Lambda T)$		
	Similarly $\mathbf{a}_{f} = \mathbf{a}_{i} (1 + \alpha \Delta \mathbf{T})$		
	$\boldsymbol{b}_{f} = \boldsymbol{b}_{i} (\boldsymbol{I} + \boldsymbol{\alpha} \boldsymbol{\Delta} \boldsymbol{T})$		

		Putting the value of \mathbf{a}_{f} , \mathbf{b}_{f} and \mathbf{c}_{f} in Eq. (ii) we get:		
		$V_{f} = \mathbf{a}_{i} (1 + \infty \Delta T) \mathbf{b}_{i} (1 + \infty \Delta T) \mathbf{c}_{i} (1 + \infty \Delta T)$ $V_{f} = \mathbf{a}_{i} \mathbf{b}_{i} \mathbf{c}_{i} (1 + \infty \Delta T)^{3}$		
		Using Eq. (i) above equation become		
		$V_f = V_i (1 + \alpha \Delta T)^3$		
		$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$		
		$V_{f} = V_{i} \left(1 + 3 \propto \Delta T + 3 \propto^{2} \Delta T^{2} + \infty^{3} \Delta T^{3} \right)$ Since ∞ is very small therefore $\alpha^{2} = 0$ and $\alpha^{3} = 0$		
		So above equation can be express as: $V_{1} = V_{1} (1 + 3 \propto AT)$		
		$V_{i} = V_{i} + 3 \propto V_{i} \Delta T$		
		$V_f - V_i = 3 \propto V_i \Delta T$		
		$\frac{V_{f} - V_{i}}{V_{i} \Delta T} = 3 \alpha$		
		$\frac{\Delta V}{V_i \ \Delta T} = 3 \alpha$		
		$B = 3 \alpha$		
		p - 3 a		
4.	Write down the principle, construction, working and use of	HYDRAULIC LIFT Hydraulic lift is a device used as a platform for a body which is to be lifted.	U	D
	the hydraulic lift.	PRINCIPLE Hydraulic lift work on the to principle of Pascal's law		
		CONSTRUCTION In a connected with a wider cylinder B and they are fitted with air tight pistons. It is filled with		

@copyright ZUEB

				
		$\frac{m_1 a}{m_2 a} = \frac{m_1 g - T}{T - m_2 g}$ $m_1 (T - m_2 g) = m_2 (m_1 g - T)$		
		$m_1 T - m_1 m_2 g = m_1 m_2 g - m_2 T$		
		$m_1T + m_2T = m_1m_2g + m_1m_2g$		
		$T(m_1 + m_2) = 2 m_1 m_2 g$		
		$T = \frac{2 m_1 m_2 g}{2 m_1 m_2 g}$		
		$m_1 + m_2$		
6	State Law of	This is required expression of tension.	TI	М
6.	State Law of Universal Gravitation. Determine the mass of Earth using Law of Gravitation	STATEMENT: "Every body in this Universe attracts every other body with same magnitude of force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them and directed along the line joining their centers".	U	M
		If a body of mass m but of very small radius as compare to the radius of earth placed on the earth surface then force with which earth attracts a body is given by: $F = \frac{GmM_e}{R_e^2} \dots \text{ Eq. (i)}$ The force with which earth attracts a body towards its centre is equal to the weight of the body. Mathematically it can be expressed as:		
		$F = m g \qquad \dots \qquad Eq. (ii)$ Comparing Eq. (i) and Eq. (ii) we get: $\frac{G m M_e}{R_e^2} = m g$ $M_e = \frac{pr g R_e^2}{pr G}$ $M_e = \frac{g R_e^2}{R_e^2}$		
		Here $G = 6.67 \times 10^{-11} Nm^2 / Kg^2$ $R_e = 6.4 \times 10^6 m$ $g = 9.8 m / s^2$ We put in above $M_e = \frac{(9.8)(6.4 \times 10^6)^2}{6.67 \times 10^{-11}}$		
7	Write down any 02	$M_e = 6 \times 10^{27} Kg$ NEWTON'S SECOND LAW OF MOTION:	T	м
/.	,, inc down any 02		U	141

	Newton's law of motion. Explain with example	STATEMENT: "When a force acts on an object, it produces acceleration in its own direction, which is directly proportional to the magnitude of the force & inversely proportional to the mass of an object."		
		EXPLANATION: If 'F' is the force acts on an object of mass 'm' and 'a' is the acceleration then mathematically		
		$F \alpha a$ F = ma		
		NEWTON'S THIRD I AW OF MOTION		
		STATEMENT: "To Every action, there is an equal and opposite reaction."		
		EXPLANATION: When a body A exerts a force on other body B then the body B exerts an equal and opposite force on body A then mathematically Newton's third law of motion is given by		
		$F_{Action} = -F_{Reaction}$		
8.	Define Boyles law, Charles law and derive general gas equation?	There are two ideal gas laws. Boyle's law and Charles law BOYLE'S LAW Introduction: In 1660, Robert Boyle studied the relation between the volumes and pressure at constant temperature and he stat that Statement: "At constant temperature and for fix no of molecule volume is inversely proportional to the pressure." Explanation: If P represents pressure and V	R	E
		represents volume of a gas then mathematically Boyle's law can be expressed as: $V \propto \frac{1}{P}$ $V = K$		
		P $P = K$ $F = K$		
		help of		
		<i>V</i> <i>i</i> boyle's law and with the help of above equation Boyle's law can also be stated as: "At constant temperature and for fix no. of molecule the product of pressure and volume remain constant."		

$V = \frac{R \ n \ T}{P}$ $P \ V = n \ R \ T$	
Where R is the constant of proportionality and it is known as universal gas constant or molar gas constant or combine gas constant. In SI System its value is 8.314 J/mol k .	